Session 2 : Fall 2016 Linear Algebra Writtens' Workshop

Aman Gupta

1 Problems

1.1 Determinants, Trace and Rank

January 1995 Problem 2

Suppose A is an $n \times n$ matrix and that

$$
x=\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right], x=\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right], y^{*}=\left(y_{1} . . y_{n}\right)
$$

Suppose that all the entries of A, x and y are real.

Part 1

Show that there exist number a and b so that $\operatorname{det}\left(A+s x y^{*}\right)=a+b s$.

Part 2
Show that if $\operatorname{det}(A) \neq 0$ then $a=\operatorname{det}(A)$ and $b=\operatorname{det}(A) y^{*} A^{-1} x$.
Part 3
Is it true that $a=0$ if $\operatorname{det}(A)=0$?

January 2012 Problem 2

Let $H=\left(h_{i j}\right)$ be an $n \times n$ matrix such that (i) All coefficients $h_{i j} \in\{+1,-1\}$ and (ii) The row vectors $h_{i}=\left(h_{i 1}, \ldots, h_{i n}\right)$ are mutually orthogonal

Part 1
Find a simple expression for $H H^{T}$

Part 2

Find $\operatorname{det}(H)$.

Part 3

Let $u=\left(u_{1}, \ldots, u_{n}\right)$ with all $u_{j}= \pm 1$. Prove that at least one coordinate of $H u^{T}$ has absolute value at least \sqrt{n}. (Hint : Find the Euclidean norm of $H u^{T}$).

January 2014 Problem 1

Consider $n \times n$ real matrices A, B and C with $A B C=0$.

- What can be the maximal possible rank of $C B A$?
- What is a maximal possible rank of $C B A$ is we assume that C, A are diagonal?
- What is a maximal possible rank of $C B A$ is we assume that A, B, C are symmetric?

1.2 Projection and Orthogonal Matrix

January 2014 Problem 1

A complex $n \times n$ matrix U is unitary if it satisfies $U^{H} U=I$. A real unitary matrix is called orthogonal.

1. If U is $n \times n$ unitary, show that

$$
\max _{j, k}\left|U_{j, k}\right| \geq \frac{1}{\sqrt{n}}
$$

with equality if and only if all of the elements of U are equal in magnitude.
2. Give an example of a 3×3 unitary matrix U for which all of the elements of U are equal in magnitude.
3. Prove the existence for every positive integer n of an $n \times n$ unitary matrix U for which all of the elements of U are equal in magnitude.
4. Now consider orthogonal matrices. For which $n \in\{2,3,4,5,6\}$ do there exist orthogonal matrices with all of the (real) elements equal in magnitude? For those $n \in\{2,3,4,5,6\}$ for which such matrices, exist, construct one; and for the remaining $n \in\{2,3,4,5,6\}$, prove that no such orthogonal matrix exists.
5. Find an infinite set S of positive integers such that for every $n \in S$ there exists an $n \times n$ orthogonal matrix all of whose elements are equal in magnitude.

September 2012 Problem 2

Find 3×3 matrices A, B and C that correspond to the following three linear operations. In all steps, explain your answers.

Part 1

Let A represent the orthogonal projection onto the plane $x-y+z=0$.

Part 2

Let B represent the reflection across the plane $x-y+z=0$.

Part 3

Let C represent rotation by π about the line $x=-y=z$. (Fortunately, it doesn't matter the sign of rotation, as either direction is the same.)

Part 4

Evaluate A^{4}, B^{2} and C^{3}.

Part 5

Evaluate $A B-B A, A C-C A$, and $B C-C B$.

September 2015 Problem 3

In this problem, $\mathcal{M}_{n}(\mathbb{C})$ is the set of square matrices with size $n \times n$ with coefficients in \mathbb{C}, and for any ma$\operatorname{trix} A, A^{*}$ is its conjugate transpose, defined such that $A_{i j}^{*}=\overline{A_{j i}}, \mathcal{U}_{n}(\mathbb{C})$ is the set of unitary matrices in $\mathcal{M}_{n}(\mathbb{C})$, i.e. matrices U whose adjoints U^{*} are also their inverses: $U^{*} U=U U^{*}=I_{n}$

Let k be an integer in $[1, n]$. We consider a matrix $P \in \mathcal{M}_{n}(\mathbb{C})$ that satisfies the conditions $\left(\mathcal{P}_{k}\right)$ given by :

$$
\left(\mathcal{P}_{k}\right) \quad P^{2}=P=P^{*}, \quad r k(P)=k
$$

1. Show that the entries of P satisfy

$$
\forall i \in \mathbb{N} \text { s.t. } 1 \leq i \leq n, 0 \leq P_{i i} \leq 1,
$$

$$
\sum_{i=1}^{n} P_{i i}=k
$$

2. Let $\lambda_{1} \geq \lambda_{2} \geq \ldots \geq \lambda_{n}$ be n real numbers and D the diagonal matrix such that $D_{i i}=\lambda_{i}$ for all integers i such that $1 \leq i \leq n$. Show that for any matrix P satisfying $\left(\mathcal{P}_{k}\right)$

$$
\operatorname{Trace}(P D) \leq \sum_{i=1}^{k} \lambda_{i}
$$

Find a matrix Q that satisfies $\left(\mathcal{P}_{k}\right)$ and such that $\operatorname{Trace}(P D)=\sum_{i=1}^{k} \lambda_{i}$
3. Show that if P_{1} and P_{2} are two matrices satisfying $\left(\mathcal{P}_{k}\right)$, there exists $U \in \mathcal{U}_{n}(\mathbb{C})$ such that $P_{2}=U P_{1} U^{*}$. Show then that

$$
\sum_{i=1}^{k} \lambda_{i}=\max _{U \in \mathcal{U}_{n}(\mathbb{C})} \operatorname{Trace}\left(U P U^{*} D\right)
$$

where P is a matrix satisfying $\left(\mathcal{P}_{k}\right)$.

1.3 Inner Product and Norms

January 2016 Problem 4

Introduction : you might recall the double-angle formulas $2 \sin ^{2} \theta=(1-\cos 2 \theta)$ and $2 \cos ^{2} \theta=(1+\cos 2 \theta)$. These formulae, along with the change-of-variables $x=\sin \theta$, can be used to show :

$$
\begin{gathered}
\int_{-1}^{+1} \frac{1}{\sqrt{1-x^{2}}} d x=\pi, \text { and } \quad \int_{-1}^{+1} \frac{x^{2}}{\sqrt{1-x^{2}}} d x=\pi / 2 \\
\int_{-1}^{+1} \frac{x^{4}}{\sqrt{1-x^{2}}} d x=3 \pi / 8, \text { and } \quad \int_{-1}^{+1} \frac{x^{6}}{\sqrt{1-x^{2}}} d x=5 \pi / 16
\end{gathered}
$$

Now consider the vector-space P_{n} of polynomials with real coefficients of degree n or less defined on the interval $x \in[-1,1]$. Endow this space with the following inner product :

$$
<f, g>_{T}=\int_{-1}^{+1} f(x) g(x) \frac{d x}{\sqrt{1-x^{2}}}
$$

(a) Find a basis $\left\{t_{0}(x), t_{1}(x), t_{2}(x)\right\}$ for P_{2} that is orthonormal with respect to $<., .>_{T}$ where t_{0} is constant, $t_{1}(x)$ is linear, and $t_{2}(x)$ is quadratic.
(b) Express the integration operator $\int_{-1}^{+1}() d$.$x as a linear operator on P_{2}$ in terms of the basis t_{0}, t_{1}, t_{2}.
(c) Now consider the polynomial

$$
a(x)=\sqrt{\frac{2}{\pi}}\left[4 x^{3}+2 x^{2}-3 x+x-1-\frac{1}{\sqrt{2}}\right] \in P_{3}
$$

Find the polynomial $b(x) \in P_{2}$ that is 'closest' to $a(x)$ in the T-norm. That is, find the $b(x)$ that minimizes :

$$
<a-b, a-b>_{T}=\int_{-1}^{+1}(a(x)-b(x))^{2} \frac{d x}{\sqrt{1-x^{2}}}
$$

(d) Now, with n arbitary, find a map from P_{n} to P_{2} that sends a polynomial $a(x) \in P_{n}$ to the polynomial $b(x) \in P_{2}$ which is closest to $a(x)$ in the T-norm.

1.4 Jordan Form

January 2014 Problem 3

Find $\lim _{N \rightarrow \infty}\left\|A^{N}(x)\right\| /\left\|B^{N}(x)\right\|$ as a function of $x \in \mathbb{R}^{2}$ if the matrices A, B are :

$$
A=\left[\begin{array}{cc}
3 & -1 \\
1 & 5
\end{array}\right], \quad B=\left[\begin{array}{cc}
6 & -2 \\
2 & 2
\end{array}\right]
$$

1.5 Related Problems for practice

S97Q5, J98Q2, J99Q3, J00Q4, S00Q2, J01Q5, S03Q1, S03Q2, J03Q5, S04Q5, J05Q1, J05Q2-Q3, J06Q3, J07Q2, J08Q3, J08Q5, J09Q3, S10Q1, S11Q3, S12Q2, S12Q4

