Session 2 : Fall 2016 Linear Algebra Writtens' Workshop

Aman Gupta

1 Problems

1.1 Determinants, Trace and Rank

January 1995 Problem 2

Suppose A is an $n \times n$ matrix and that

$$x = \begin{bmatrix} x_1 \\ \vdots \\ x_n \end{bmatrix}, x = \begin{bmatrix} y_1 \\ \vdots \\ y_n \end{bmatrix}, y^* = (y_1 \dots y_n)$$

Suppose that all the entries of A, x and y are real.

Part 1

Show that there exist number a and b so that $det(A + sxy^*) = a + bs$.

Part 2

Show that if $det(A) \neq 0$ then a = det(A) and $b = det(A)y^*A^{-1}x$.

Part 3

Is it true that a = 0 if det(A) = 0?

January 2012 Problem 2

Let $H = (h_{ij})$ be an $n \times n$ matrix such that (i) All coefficients $h_{ij} \in \{+1, -1\}$ and (ii) The row vectors $h_i = (h_{i1}, ..., h_{in})$ are mutually orthogonal

Part 1

Find a simple expression for HH^T

Part 2

Find det(H).

Part 3

Let $u = (u_1, ..., u_n)$ with all $u_j = \pm 1$. Prove that at least one coordinate of Hu^T has absolute value at least \sqrt{n} . (Hint : Find the Euclidean norm of Hu^T).

January 2014 Problem 1

Consider $n \times n$ real matrices A, B and C with ABC = 0.

- What can be the maximal possible rank of *CBA*?
- What is a maximal possible rank of CBA is we assume that C, A are diagonal?
- What is a maximal possible rank of CBA is we assume that A, B, C are symmetric?

1.2 Projection and Orthogonal Matrix

January 2014 Problem 1

A complex $n \times n$ matrix U is unitary if it satisfies $U^H U = I$. A real unitary matrix is called orthogonal.

1. If U is $n \times n$ unitary, show that

$$max_{j,k}|U_{j,k}| \ge \frac{1}{\sqrt{n}}$$

with equality if and only if all of the elements of U are equal in magnitude.

- 2. Give an example of a 3×3 unitary matrix U for which all of the elements of U are equal in magnitude.
- 3. Prove the existence for every positive integer n of an $n \times n$ unitary matrix U for which all of the elements of U are equal in magnitude.
- 4. Now consider orthogonal matrices. For which $n \in \{2, 3, 4, 5, 6\}$ do there exist orthogonal matrices with all of the (real) elements equal in magnitude? For those $n \in \{2, 3, 4, 5, 6\}$ for which such matrices, exist, construct one; and for the remaining $n \in \{2, 3, 4, 5, 6\}$, prove that no such orthogonal matrix exists.
- 5. Find an infinite set S of positive integers such that for every $n \in S$ there exists an $n \times n$ orthogonal matrix all of whose elements are equal in magnitude.

September 2012 Problem 2

Find 3×3 matrices A, B and C that correspond to the following three linear operations. In all steps, explain your answers.

Part 1

Let A represent the orthogonal projection onto the plane x - y + z = 0.

Part 2

Let B represent the reflection across the plane x - y + z = 0.

Part 3

Let C represent rotation by π about the line x = -y = z. (Fortunately, it doesn't matter the sign of rotation, as either direction is the same.)

Part 4 Evaluate A^4, B^2 and C^3 .

Part 5

Evaluate AB - BA, AC - CA, and BC - CB.

September 2015 Problem 3

In this problem, $\mathcal{M}_n(\mathbb{C})$ is the set of square matrices with size $n \times n$ with coefficients in \mathbb{C} , and for any matrix A, A^* is its conjugate transpose, defined such that $A_{ij}^* = \bar{A}_{ji}, \mathcal{U}_n(\mathbb{C})$ is the set of unitary matrices in $\mathcal{M}_n(\mathbb{C})$, i.e. matrices U whose adjoints U^* are also their inverses: $U^*U = UU^* = I_n$ Let k be an integer in [1, n]. We consider a matrix $P \in \mathcal{M}_n(\mathbb{C})$ that satisfies the conditions (\mathcal{P}_k) given by :

$$(\mathcal{P}_k) \qquad P^2 = P = P^*, \quad rk(P) = k$$

1. Show that the entries of P satisfy

$$\forall i \in \mathbb{N} \ s.t. \ 1 \le i \le n, 0 \le P_{ii} \le 1,$$

$$\sum_{i=1}^{n} P_{ii} = k$$

2. Let $\lambda_1 \geq \lambda_2 \geq ... \geq \lambda_n$ be *n* real numbers and *D* the diagonal matrix such that $D_{ii} = \lambda_i$ for all integers *i* such that $1 \leq i \leq n$. Show that for any matrix *P* satisfying (\mathcal{P}_k)

$$Trace(PD) \le \sum_{i=1}^k \lambda_i$$

Find a matrix Q that satisfies (\mathcal{P}_k) and such that $Trace(PD) = \sum_{i=1}^k \lambda_i$

3. Show that if P_1 and P_2 are two matrices satisfying (\mathcal{P}_k) , there exists $U \in \mathcal{U}_n(\mathbb{C})$ such that $P_2 = UP_1U^*$. Show then that

$$\sum_{i=1}^{k} \lambda_i = max_{U \in \mathcal{U}_n(\mathbb{C})} \ Trace(UPU^*D)$$

where P is a matrix satisfying (\mathcal{P}_k) .

1.3 Inner Product and Norms

January 2016 Problem 4

Introduction : you might recall the double-angle formulas $2\sin^2\theta = (1 - \cos^2\theta)$ and $2\cos^2\theta = (1 + \cos^2\theta)$. These formulae, along with the change-of-variables $x = \sin^2\theta$, can be used to show :

$$\int_{-1}^{+1} \frac{1}{\sqrt{1-x^2}} dx = \pi, \text{ and } \int_{-1}^{+1} \frac{x^2}{\sqrt{1-x^2}} dx = \pi/2$$
$$\int_{-1}^{+1} \frac{x^4}{\sqrt{1-x^2}} dx = 3\pi/8, \text{ and } \int_{-1}^{+1} \frac{x^6}{\sqrt{1-x^2}} dx = 5\pi/16$$

Now consider the vector-space P_n of polynomials with real coefficients of degree n or less defined on the interval $x \in [-1, 1]$. Endow this space with the following inner product :

$$< f,g>_T = \int_{-1}^{+1} f(x)g(x) \frac{dx}{\sqrt{1-x^2}}$$

(a) Find a basis $\{t_0(x), t_1(x), t_2(x)\}$ for P_2 that is orthonormal with respect to $\langle ., . \rangle_T$ where t_0 is constant, $t_1(x)$ is linear, and $t_2(x)$ is quadratic.

(b) Express the integration operator $\int_{-1}^{+1} (.) dx$ as a linear operator on P_2 in terms of the basis t_0, t_1, t_2 .

(c) Now consider the polynomial

$$a(x) = \sqrt{\frac{2}{\pi}} \Big[4x^3 + 2x^2 - 3x + x - 1 - \frac{1}{\sqrt{2}} \Big] \in P_3$$

Find the polynomial $b(x) \in P_2$ that is 'closest' to a(x) in the T-norm. That is, find the b(x) that minimizes :

$$\langle a-b, a-b \rangle_T = \int_{-1}^{+1} (a(x)-b(x))^2 \frac{dx}{\sqrt{1-x^2}}.$$

(d) Now, with n arbitrary, find a map from P_n to P_2 that sends a polynomial $a(x) \in P_n$ to the polynomial $b(x) \in P_2$ which is closest to a(x) in the T-norm.

1.4 Jordan Form

January 2014 Problem 3

Find $\lim_{N\to\infty} ||A^N(x)||/||B^N(x)||$ as a function of $x\in\mathbb{R}^2$ if the matrices A,B are :

$$A = \left[\begin{array}{cc} 3 & -1 \\ 1 & 5 \end{array} \right], \quad B = \left[\begin{array}{cc} 6 & -2 \\ 2 & 2 \end{array} \right]$$

1.5 Related Problems for practice

 $S97Q5,\ J98Q2,\ J99Q3,\ J00Q4,\ S00Q2,\ J01Q5,\ S03Q1,\ S03Q2,\ J03Q5,\ S04Q5,\ J05Q1,\ J05Q2-Q3,\ J06Q3,\ J07Q2,\ J08Q3,\ J08Q5,\ J09Q3,\ S10Q1,\ S11Q3,\ S12Q2,\ S12Q4$