Session 1 : Fall 2016 Linear Algebra Writtens' Workshop
 Aman Gupta

1 Problems

1.1 Spectral Theorem

September 2013 Problem 5

Let A be an Hermitean square matrix. Show that

$$
\operatorname{rank}(A) \geq \frac{[\operatorname{tr}(A)]^{2}}{\operatorname{tr}\left(A^{2}\right)}
$$

1.2 Symmetric and Positive definite matrices

September 2014 Problem 1

A real $n \times n$ matrix A, not necessarily symmetric, is said to be positive definite if $x^{T} A x>0$ for every nonzero $x \in \mathbb{R}^{n}$

1. Show that a real $n \times n$ matrix A is positive definite is and only if the symmetric matric $\left(A^{T}+A\right)$ is positive definite.
2. If a real $n \times n$ matrix A is positive definite, show that $(I+\lambda A)$ is invertible for every $\lambda \geq 0$
3. Consider the system of differential equations

$$
\frac{d x}{d t}=-A x
$$

in which $x(t) \in \mathbb{R}^{n}$ for each t, and $A(t)$ is real $n \times n$ matrix for each t, with $A(t)$ positive definite, but not necessarily symmetric. Show that

$$
\frac{d}{d t}\left(x^{T} x\right) \leq 0
$$

at each t, which is equality if and only if $x(t)=0$
4. Consider the linear system

$$
x-y=-A(x+y)
$$

where $x \in \mathbb{R}^{n}$ is unknown, $y \in \mathbb{R}^{n}$ is given; and where A is real $n \times n$, and positive definite, but not necessarily symmetric.

Prove the existence and uniqueness of x satisfying the above equation, and moreover that

$$
x^{T} x \leq y^{T} y
$$

with equality if and only if $y=0$

September 2013 Problem 3

Consider the square matrix $A=\left[a_{i j}\right] \in M_{n}$ with

$$
a_{i j}=\min (i, j)
$$

Prove that A is positive definite.

September 2008 Problem 3

Part 1 : Find a lower triangular matrix, L, so that $L L^{T}=A$, where

$$
A=\left[\begin{array}{llll}
1 & 1 & 0 & 2 \\
1 & 5 & 2 & 2 \\
0 & 2 & 2 & 1 \\
2 & 2 & 1 & 6
\end{array}\right]
$$

Part 2: Find the volume in \mathbb{R}^{4} of the set of x with $x^{T} A x \leq 1$. You may use the fact that the volume in \mathbb{R}^{4} of the set of x with $|x|^{2}=x^{T} x \leq 1$ is $\frac{1}{2} \pi^{2}$. Hint : this is not a calculus problem.

September 2010 Problem 1

Let

$$
\rho(x, y)=\frac{1}{Z} \exp \left(\begin{array}{ll}
-\left(\begin{array}{ll}
x & y
\end{array}\right) \cdot C \cdot\left(\begin{array}{ll}
x & y
\end{array}\right)^{T}
\end{array}\right)
$$

where $C \in \mathbb{R}^{2 \times 2}$ is a positive definite symmetric matrix and $Z>0$ is a constant.
Part 1 :
Describe how to construct a unitary 2×2 matrix U such that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} z w \rho(x, y) d x d y=0
$$

where z and w are defined via

$$
U \cdot(z, w)^{T}=(x, y)^{T}
$$

Part 2 :

Use these newfound coordinates z and w to find the value of Z such that

$$
\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \rho(x, y) d x d y=1
$$

Hint : In case you forgot, $\int_{-\infty}^{\infty} e^{-a \nu^{2}} d \nu=\sqrt{\pi / a}$

1.3 Quadratic Forms

January 2010 Problem 1

Identify the surface

$$
3 x^{2}+5 y^{2}+3 z^{2}+2 x y+2 x z+2 y z=1
$$

as an ellipsoid in \mathbb{R}^{3}. Find the principal directions and the radii.

September 2015 Problem 5

Let n be an integer greater than $1, \alpha$ be a real number, and consider the quadratic form Q_{α} given by

$$
\forall\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}, Q_{\alpha}\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=1}^{n} x_{i}^{2}-\alpha\left(\sum_{i=1}^{n} x_{i}\right)^{2}
$$

Find all the eigenvalues of Q_{α} in terms of α and n. What is the condition on α for Q_{α} to be positive definite?

September 2008 Problem 4

Suppose $F(A)$ is a quadratic function of a real symmetric matrix A. This means that there are numbers $f_{i j k l}$ so that $F(A)=\sum_{i, j, k, k, l} f_{i j k l} a_{i j} a_{k l}$. Suppose that $F(A)=F\left(Q A Q^{T}\right)$ for every orthogonal matrix Q. Show that there are numbers c and d so that $F(A)=c \operatorname{Tr}\left(A^{2}\right)+d(\operatorname{Tr}(A))^{2}$. Here $\operatorname{Tr}(A)$ is the trace of A.

1.4 Matrix Equations

September 2011 Problem 4

Consider the problem

$$
A X+X A=B
$$

where A, X, and B are real $n \times n$ matrices. Here A and B are given, but X is unknown. Let A be symmetric and positive definite. That is, $A^{T}=A$ and $z^{T} A z>0$ for all nonzero $z \in \mathbb{R}^{n}$.

1. Is this a linear system of equations? If so, how many equations and how many unknowns does it have?
2. Prove that the solution exists and is unique.
3. Solve for X. (Hint : Diagonalize A)

September 1998 Problem 2

Let A and B be square matrices that do not commute, i.e. such that $A B \neq B A$. Suppose further that A, B, and $(A+B)$ are each invertible. Show that $A(A+B)^{-1} B=B(A+B)^{-1} A$

September 2009 Problem 4

Consider the problem

$$
\left(A+u v^{T}\right) x=b
$$

which is to be solved for x given A, u, v, b where A is a non-singular $n \times n$ matrix and u, v, b are each $n \times 1$, as is the unknown vector x.

Part 1 :

Look for a solution of the form

$$
x=A^{-1} b+\lambda A^{-1} u
$$

where λ is a scalar. Solve for λ in terms of the given data.

Part 2 :

Let d be the denominator in your formula for λ. Show that

$$
(d=0) \Longrightarrow\left(\operatorname{det}\left(A+u v^{T}\right)=0\right)
$$

- Other Matrix Equations
- Sherman Morisson formula

1.5 Related Problems for practice

J95Q4, S96Q5, S98Q4, J01Q4(Courant Minmax theorem), S01Q4, S02Q3, S02Q5, S09Q3, J10Q3, J10Q4, S10Q2, S14Q4,

