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Outline

* Introduction and Motivation : overview of the stratospheric circulation, transport and
idealized models

* The Leaky Pipe : A theoretical framework to study transport in the stratosphere

* Results : Using the leaky pipe to study the impact of numerics and dynamics in determining
stratospheric transport
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DJF climatology in the stratosphere
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Latitude

Climatological winds : Wintertime polar vortex and tropical and summer hemisphere easterlies

Tropics dominated by diabatic upwelling, midlatitudes by isentropic mixing, isolated polar night jet
over the winter poles. Quiescent summer hemisphere.
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Most ozone is produced in the
tropics, yet at the onset of spring,
the ozone concentration is the
highest near the winter poles.

First evidence of the tropics-to-
pole circulation we now refer fo as
the Brewer-Dobson Circulation
(BDC)



Quantifying transport : Age of Air (AoA)

Age of air of an air-mass quantifies the time
elapsed last surface contact. (Hall and Plumb
1994, Waugh and Hall ‘02)

A measure of transport timescales in the
atmosphere. Estimates residence times of
tracer gases like CFCs, SF,, CH,

An idealized tracer with a source in time.
Independent of chemistry/parameterizations,
only depends on the tracer advection suite of
a model.
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Fig : Computing age in models using clock tracer




Model stratosphere

Models — useful tools to study the
stratosphere!

Using idealized models provide a way to
focus on large-scale dynamics and transport 1
coupling. No parameterizations, less 3/
uncertainty.
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forcings to get a fairly realistic representation
of fropospheric and stratospheric circulation
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This setup is called a Held-Suarez and
Polvani-Kushner (HSPK) setup



Studying transport in an idealized framework

* Use the setup to force the 2 dynamical cores (fluid equation solver) :

- Identical idealized diabatic forcing (HSPK); wave-2 topography at 45N
- No seasonal cycle : DJF climatology

- Integrated for 10,000 days

- No parameterizations

- Linearly increasing clock tracer



Studying transport in an idealized framework

Use the setup to force the 2 dynamical cores (fluid equation solver) :

- Identical idealized diabatic forcing (HSPK); wave-2 topography at 45N
- No seasonal cycle : DJF climatology

- Integrated for 10,000 days

- No parameterizations

- Linearly increasing clock tracer

CAM-SE

CAM SPECTRAL ELEMENT
Uses spectral finite element in the Uses finite volume conservative formulation
horizontal and finite volume in the vertical in the horizontal and the vertical

Comparable horizontal and vertical resolution (Ideg x 1deg, 80 vertical levels)
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Strikingly different age-of-air in modern dynamical cores
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The 2 cores develop strikingly different age-of-air profiles in the stratosphere. Why?



What factors affect stratospheric transport?

Transport
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The Problem

Question : When we force two different “modern” dynamical cores with identical diabatic forcings,
why do they develop such different fransport?

Question : What is causing these differences?
- Differences in numerical diffusion in tracer advection schemes?
- Differences in isentropic mixing in midlatitude stratosphere?
- Differences in diabatic circulation among the models?

Question : Can we assess the extent o which each factor affects differences in transport?



The Theoretical Leaky Pipe Model of Stratospheric Transport

Zonally averaged stratospheric circulation
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* The TLP model (Neu and Plumb ‘99) integrates and divides the stratosphere into 2
regions of upwelling (u) and downwelling (d). Hydrostafic. Isothermal. Steady state.



The Theoretical Leaky Pipe Model of Stratospheric Transport

Zonally averaged stratospheric circulation | Emmssmsly-  Simplified schematic and

horizontally fluxes in leaky pipe
integrating

Pm‘.esl MiotATITUDE S | Teorzes /‘\
poleward/downward 1
diabatic flaw + TROPICS

strang stiring diabatic upwelling
+ waak stiring

POLARVORTES e My P (92 9] M dcg'm 9)
sibsidence + -— I
|| weak stirring ] SUMMER EXTRATAOPICS : .
| St 0+49 | !
A Pk
b L 9 /

Thopush Map(B) ‘
rﬂpqgf ’H_‘Ch-l. P lM.J CQ)

* The TLP model (Neu and Plumb ‘99) integrates and divides the stratosphere into 2
regions of upwelling (u) and downwelling (d). Hydrostafic. Isothermal. Steady state.
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The Theoretical Leaky Pipe Model of Stratospheric Transport

Zonally averaged stratospheric circulation
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* The TLP model (Neu and Plumb ‘99) integrates and divides the stratosphere into 2
regions of upwelling (u) and downwelling (d). Hydrostatic. Isothermal. Steady state.

* The net and mixing fluxes b/w the two regions are specified as a function of height.

Simplified schematic and
fluxes in leaky pipe
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The Theoretical Leaky Pipe Model of Stratospheric Transport

Zonally averaged stratospheric circulation - =

horizontally
integrating
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* The TLP model (Neu and Plumb ‘99) integrates and divides the stratosphere into 2
regions of upwelling (u) and downwelling (d). Hydrostatic. Isothermal. Steady state.

* The net and mixing fluxes b/w the two regions are specified as a function of height.

Simplified schematic and
fluxes in leaky pipe

JtF (9+A8) M 4(0+08)

s

5=
&

T Mot

A
3

(':(G) e [
4 4
2 T
o) 2

\

p)

TR T cAL  EXTRATEPICA

L

UPUWELLIN §  DowNweLLInNg



We allow vertical variations in all Leaky Pipe parameters

* The original leaky pipe formulation uses
constant vertical velocity and mixing efficiency.
While it makes the problem analytically
solvable, it prevents a direct connection
between models and theory.

* We allow vertical variations of all the leaky pipe
parameters and reformulate it in isentropic
coordinates, for a more accurate model-to-
theory connection.

* These equations are numerically integrated
with ascent rate, mixing efficiency and mass
distribution determined using model data

Theoretical leaky pipe formulation
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Creating parallelism between full model transport and 1D theoretical Leaky Pipe model
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Creating parallelism between full model transport and 1D theoretical Leaky Pipe model
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Creating parallelism between full model transport and 1D theoretical Leaky Pipe model
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The missing piece : estimating the mixing flux

1. Age of air is a tracer with a source in time :

or

1
P

I'=T1(z,y,60,t) : age of air

e, el = po = 3|dp/de| :isentropic density

F = pgfl’ — ¥V (pgl") : advective-diffusive flux of age

2. In the no-diffusion limit, the vertical gradient of these quantities allow quantifying the mixing fluxes
across the subtropical barrier (Linz et al. in prep)

Vertical gradient :

We compute the weighted age I', and I ,and p

O1 o r M(0) : diabatic mass flux
‘ %z 5 B () : horizontally avgd density

tmiz(8) : ET — T mixing flux

aging by advection  aging by mixing

from the 2 climate models, impose them in the

mix

leaky pipe “emulator” and incrementally change parameters to see their effect on the age.
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Comparing the model age and the leaky pipe “fit”

Y m— Tropical Age I, FR Runs Extratropical Age Iy, FR Runs
1600
1 3 5 7 9 11 —_
Isentropic age GFDL-FV3 FR :‘E.
1600 E 1200 -
1200 b=
S 900
) :
£
v
600 Dimensional reduction ': 600 -
from fullmodel age @
At
400 % 5
e
o
—75 —45 —I'.IaSHMZII.E 45 75 a 400 - DOWN
1 2 3 45 6 7 8 9102 3 4 5 6 7 8 9 10

Age [Yrs] Age [Yrs]

A good fit is obtained between integrated age from models and the age from vertically varying
leaky pipe formulation in both the regions.
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Comparing the model age and the leaky pipe “fit”
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A good fit is obtained between integrated age from models and the age from vertically varying
leaky pipe formulation in both the regions.



Isolating the contribution of different factors to transport
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Isolating the contribution of different factors to transport
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Isolating the contribution of different factors to transport

Difference in mixing between
the models accounts for
3/4th of the difference in age
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Isolating the contribution of different factors to transport
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Isolating the contribution of different factors to transport
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The extratropical-tropical mixing fluxes are different mdeedI
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The exiratropical-tropical mixing fluxes are different indeed!
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Does constraining the tropical winds resolve the issue?
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Does consiraining the tropical winds resolve the issue?
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Constraining tropical winds to be identical among models drastically reduces the age difference. Some
difference still remains.



Does constraining the tropical winds resolve the issue?

FV3 fit
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In this case, analysis shows
that most of the age difference
can now be explained due to
differences in diabatic
circulation (red dashed curve).

Differences in mixing have
small contribution (red vs violet
dashed curve) in the lower
and mid stratosphere.



Does constraining the tropical winds resolve the issue?

FV3 fit

'ﬁpnetj

O(Hpet + €)

O(Hpet + € + @)
OlUner + € + o + BC)
SE fit

Potential Temperature [K]

Potential Temperature [K]

1600

600 -

400 A

1600

1200

900 +

600 -

400 A

[
o N
o (=]
o o

., SP leaky pipe fit

-y

I, difference wrt FV¥3 SP TLP fit

1234567 8 910
la, SP leaky pipe fit

Iy difference wrt FV3 SP TLP fit

=
-
-

2

3 4 5 6 7 8 9 10 —-025 0.0
Age [Yrs]

0

0.25
Age [Yrs]

0.50

0.75

— Glunet)
— Olppet +€)
GlUpe + € + a)
—— Olipee + £+ a + BC)
—— SE-FV3fit

In this case, analysis shows
that most of the age difference
can now be explained due to
differences in diabatic
circulation (red dashed curve).

Differences in mixing have
small contribution (red vs violet
dashed curve) in the lower
and mid stratosphere.



Does constraining the tropical winds resolve the issue?

FV3 fit
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small contribution (red vs violet
dashed curve) in the lower
and mid stratosphere.



Does constraining the tropical winds resolve the issue?

FV3 fit
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can now be explained due to
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circulation (red dashed curve).

Differences in mixing have
small contribution (red vs violet
dashed curve) in the lower
and mid stratosphere.



Does constraining the tropical winds resolve the issue?
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The diabatic circulation is noticeably different indeed!
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* Figure shows the diabatic mass
streamfunction at two different isentropes.

* The FV3 model (in orange) develops a
slightly higher diabatic circulation as
compared to the SE model (in green), when
the tropical winds are constrained.

* A faster circulation results in a younger age.
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Conclusion

Choice of dynamical cores is crucial while studying stratospheric dynamics and transport.
State-of-the-art dynamical cores have very different stratospheric transport (age of air),
despite identical forcings.

Following Linz et al. 2016, we link the 3D circulation to a generalized version of the
theoretical leaky pipe model to analyze the transport differences. This has been
accomplished my dimensional reduction of model age and by allowing vertical variations in
the original leaky pipe formulation

Approximately 3/4th of the differences in age between the two cores was due to
differences in mixing between the tropics and the extratropics, associated with differences
in tropical winds. Other factors, such as diabatic circulation strength, numerical diffusion
and mass distribution account for the rest of the differences.

Then the tropical winds are constrained, age becomes more similar, but still differs by about
15% due primarily to differences in circulation
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