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Atmospheric Gravity Waves (GWs) Typical
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Critical Importance of Atmospheric Gravity Waves

Key drivers of global circulation and periodic
wind patterns, in the middle atmosphere.
Indirectly influencing Antarctic summer

heat extremes via polar vortex variability
(Choi et al., 2024).

QBO animation credits: Hamid Pahlavan

Atmospheric GWs induce clear air turbulence (CAT)

and influence upper tropospheric predictability.

Severe Convectively Induced Turbulence Hitting a Passenger ...

by S Gisinger - 2024 - Cited by 2 — The Singapore Airlines flight SQ321 was on its way from London to

Singapore when severe turbulence was encountered over Myanmar on 21 May 2024.

Tropical Quasi-Bienniel Oscillation (QBO)
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Current GW Parameterizations have Notable Biases

ERAS, 3 Aug 2019, 0000 UTC

Key observed properties:
1) Lateral propagation: of wave fluxes away from source

2) Refraction: changes in wavenumber as they propagate

- 3) Transience: temporal coherence of wave packets
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a) QBO representation

b) “cold-pole” bias in Austral summer
stratosphere

¢) Midlatitude jet strength and

mesospheric overturning circulation
Resolved waves  resolved flux  parameterized flux



Objective: Use ML to Predict Subgrid-scale Gravity Wave Fluxes

Learn momentum fluxes ot VL di
from high-resolution, GW- - ouple the uti uxlpre ctor ':jo?
resolving data coarse-resolution climate mode

Gravity wave

Background atmospheric [ w' W’ ] momentum fluxes from high-

conditions

, resolution reanalysis/obs
(resolved by climate models)

(unresolved by climate models)

E > 2



Part 1: Nonlocal Emulation
Developing ML architectures to learn GW lateral propagation



We train three ML models with varying degrees of nonlocality

M1: Single Column

(a) M1: 1 x 1 ANN Schematic
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Model M1: inspired from traditional parameterizations
Dynamical variables in a column used to predict flux in the column



We train three ML models with varying degrees of nonlocality

M2: Multiple Columns

(b) M2: 3 x 3 ANN-CNN Schematic
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Model M2: Introducing slight nonlocality in space
Dynamical variables in T + 8 neighboring columns to predict fluxes in the central column



We train three ML models with varying degrees of nonlocality

M3: Global Attention U-Net

Model M3: Globally nonlocal Attention UNet (Oktay et al. 2018)
Global input of dynamical variables to predict fluxes globally.



Training Configuration for Models M1-M3

Learn momentum fluxes = th q i
from high-resolution, GW- - Couple the ML. ux ;_)re ictor to a
resolving data coarse-resolution climate model

u

Gravity wave
Backgroun§ _atmOSDheFiC v - ww' momentum fluxes from high-
conditions 0 - i resolution reanalysis/obs
(resolved by climate models) ki vw (unresolved by climate models)
W

* M1-M3 first trained on 4 years of ERAS reanalysis (3 years training + 1 year validation).
Identical hyperparameters and similar model sizes.

* Later, re-trained on 4 months (NDJF) of 1.4 km global ECMWEF-IFS model.

* Trained on different feature sets, both globaly and exclusively in the stratosphere.



Evaluate performance beyond RMSE

v

Test 1. Temporal Evolution Test 2. Seasonal Averages Test 3. Flux distribution

Does the model correctly ~ Does the model generate Does the model generate
learn the temporal wave accurate global flux distribution? ~ desired statistics?
evolution



(b} Scandinavian Mountains, 30 km, Jan 2015

(a) Newfoundland, 30 km, Jan 2015
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(c) Tropical Pacific, 12 km, Jan 2015 (d) South East Asia, 12 km, July 2015
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M1-M3 models skillfully learn the intermittent and coherent evolution of GW fluxes in the atmosphere
over both orographic and nonorographic hotspots. Nonlocal models uniformly perform better.



1 ° Tem poral GWs in the Southern Hemisphere, 30 km (10 hPa), 16-07-2015 01 UTC
EVO | utl on GW structure, ERAS true flux, ERAS

prediction: Attn UNet model
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Attention Unet (M3) correctly predicts wave excitation and lateral propagation over multiple hotspots
over the Southern Ocean (Andes, small islands, storm tracks, Antarctic Peninsula, etc.)

Successful simulation of belts of midlatitude GW activity in both hemispheres without special
provisions for recurrence.



JJA mean zonal flux comparison, 10-30 hPa average
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2. Seasonal Averages

All of M1, M2, M3 generate
commendable predictions.

Attention UNets generate the
most accurate predictions in
the midlatitudes

(where horizontal propagation
iS most prominent).



101 =

100_

10—1 4

10774

1034

1071 ==

10" 4

100 4

107"y

3. Global Flux Distribution
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Part 2: Transfer Learning (TL)
Blending low-fidelity datasets with high-fidelity datasets



Improving predictions using transfer learning (TL) on high-res datasets

Step 1: Reqgular Training

High-volume low-fidelity ERAS data

3 years of ERAS
training data

Evaluate on 1 year of

ANN with 6 hidden Ly ERAS data and 4
layers months of IFS data

ERAS under-resolves mesoscale GWs.



Improving predictions using transfer learning (TL) on high-res datasets

Step 1: Regular Training Step 2: Transfer Learning
High-volume low-fidelity ERAS data Low-volume high-fidelity IFS data
=
M A A M N Re-evaluate on 1
year of ERAS data
Re-train on
3yearsof ERAS | »| three months of |, .

training data

ANN with 6 hidden
layers

IFS-1km data

Re-evaluate on 4
months of IFS data

\

Fl= = = = = = = a = mn

1
[

Evaluate on 1 year of

- ERASdataand4 Re-train only the last
months of IFS data two layers of the ANN

ERAS under-resolves mesoscale GWs. This underestimation is corrected by transfer
learning on limited-period-high-resolution fluxes from a kilometer-scale global models



Partly Retraining on 1Tkm global ECMWEF-IFS: Best of Both Worlds?

Transfer learning on Attention UNet | u, v, 6, w | 10-30 hPa

(a) ERA5 NDJF 2015 mean (b) IFS NDJF mean

< -

NDJF Fluxes
from ERAS —>

NDJF Fluxes
from IFS-1km

Trained only on ERAS
<4— Tested on IFS-1km
Under-resolves fluxes

Trained only on ERAS
Tested on ERA5 ——p
Skillful prediction

-18 -0.9 0.0 0.9 1.8
zonal GW flux u'w’ (mPa)



Partly Retraining on 1Tkm global ECMWEF-IFS: Best of Both Worlds?

Transfer learning on Attention UNet | u, v, 6, w | 10-30 hPa

(a) ERA5 NDJF 2015 mean (b) IFS NDJF mean
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Trained only on ERA5S
<4— Tested on IFS-1km
Under-resolves fluxes

Trained only on ERAS
Tested on ERA5 ——p
Skillful prediction

<4— Correction of IFS flux
prediction after
transfer learning
(as expected)
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Partly Retraining on 1Tkm global ECMWEF-IFS: Best of Both Worlds?

Transfer learning on Attention UNet | u, v, 6, w | 10-30 hPa

(a) ERAS5 NDJF 2015 mean (b) IFS NDJF mean

NDJF Fluxes

NDJF Fluxes
from ERAS —>

from IFS-1km

Trained only on ERAS
Tested on ERA5 ——p
Skillful prediction

Trained only on ERA5
| < Tested on IFS-1km
Under-resolves fluxes

<4— Correction of IFS flux
prediction after
transfer learning
(as expected)

/ (e) ERAS prediction after TL

Improved magnitudes
in ERAS after —p =
transfer learning
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zonal GW flux u'w' (mPa)
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TL Yields Skillful Predictions on Out-of-set Months

(a) resolved ERA5S

(c) prediction after TL
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Following TL, models predict
stronger fluxes, while
identifying the correct hotspots.

The models blend learnings from
both low-fidelity high-volume and
high-fidelity low-volume datasets.

Models provide effective ‘scaling’
of fluxes even on out-of-set
months.



TL Yields Skillful Predictions on Out-of-set Months

(a) resolved ERA5S (b) prediction before TL (c) prediction after TL
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(d) resolved ERA5 (e) prediction before TL
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(f) prediction after TL
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Following TL, models predict
stronger fluxes, while
identifying the correct hotspots.

The models blend learnings from
both low-fidelity high-volume and
high-fidelity low-volume datasets.

Models provide effective ‘scaling’
of fluxes even on out-of-set
months.



TL Yields Skillful Predictions on Out-of-set Months

(a) resolved ERA5S (b) prediction before TL (c) prediction after TL
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Following TL, models predict
stronger fluxes, while
identifying the correct hotspots.
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The models blend learnings from
both low-fidelity high-volume and
high-fidelity low-volume datasets.
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Physically Consistent Performance on Key Stratospheric Features
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A Nonlocal Deep Learning Parameterization for
Climate Model Representation of Atmospheric Gravity
Waves: Offline Performance
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Key Conclusions ——

1. Skillful performance: The three ML schemes learn nonlocal propagation,
temporal coherence, and seasonal distributions of GW fluxes from high-resolution
data.

2. Importance of nonlocality: The model with the highest embedded nonlocality
generates the best predictions.

3. Transfer learning: allows blending multiple datasets to improve performance

4. Limitation: the schemes proficiently predict large-amplitude GW packets,
but predicting small values is still a challenge 3 /JZ/ g e
In Progress RERT™ L

1. Testing performance on dissimilar model outputs: high-resolution CAM and ICON runs.

2. Coupling the ML scheme to a climate model (CAM7) to test 5 t
“online” performance and stratospheric variability: a software engineering challenge a
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3. Global Flux Distribution Hp.a) = afxex (V@) - Vala) dr =1 —fmex V()g(a)da.

1x1 unet [ era5
107 (:a) DJ!: 104 : (@) DJF :
ERAS : 0.001 era5 : : 0.180 0.02
1 1x1 — : : 0.04
10%: 1 3x3 : s 10° : i
1 UNet : 0.004 ] : upper
: ; stratosphere
1071} / 10} | § ﬂ
10_7 ] E é 10_’ | E E 0.0 0.2 0.4 =05 0.0 0.5 0.3 0.4 0.5 0.6 0.7 0.4 ‘U.S 0.6 0.40 0.45, 0.50
1073 . 10-2 v
2 s y : : lower
el . : : stratosphere
10744 : - - 10-+
-3 -2 -1 o0 1 2 3 -4 -3 -2 -1 0 1 2 3 4
101 B (‘(:) .IJ‘Al 101 ~ . (C) JJA i -0.2 0.0 0.2 0.4 -0.3 0.0 0.3 0.0 0.2 0.4 0. 0.0 0.5 ' 0.4
008 0184 SH poles SH midlat tropics NH midlat NH poles
109 4 1004
10714 1074
2 The three models generate comparable distribution
10~ 10-24
tails for all seasons
1073 10734

Prominent narrow bias in flux predictions by ANNs

I T e = B SRR,
normalized flux u'w’ normalized flux u'w’
Seasonal averages daily averages Areas of weak GW activity (in summer stratosphere)

most challenging to simulate.



Learning nonlocality through nonlocal architectures

M1 Input M2 Input M1 & M2 Output
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3x3 maps on 122 vertical levels for 3 variables

M3 Input M3 Output
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64x128 maps on 122 vertical
levels for 3 variables




Attention UNet Schematic

(c) M3: Attention U-Net Schematic CUTRLT
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Daily Sampled Flux Distributions
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Transfer Learning on out-of-set months

Transfer Learning (TL) on 1-km IFS | 10-01-2015 01 UTC
(a) ERAS Flux (c) Pred. flux after TL
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(b) UNet loss, different features, stratosphere
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GWSs form a belt of wave activity in the middle atmosphere

Green: Flux envelope, Color: Flux at 2 hPa (~45 km)
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ERAS5 Data



Pressure (hPa)

Pressure (hPa)
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Neural Network as a Collection of Perceptrons

Brain is a network of interconnected neurons. For any input/actions, only selected neurons fire at a given time. A multi-
layer perceptron (MLP) is a collection of neurons with equisized, fully-connected hidden layers. Similarly, a size-varying
MLP without loops is called a feedforward neural network.

Consider a feedforward neural network arranged as an input layer, 2 hidden layers, and an output layer:

(D) ¢ RF 3 ¢ Rk Forward Propagation
(1) Each layer maps to the next using a set of weights

(2) The linear transformation is followed by a non-
linear activation o(.)

) = g (W%.T;E(i))

Input Layer b . L i
Hidden Layer 1 W; € R*2™41 g, - R4+ RMHL

Hidden Layer 2
Output Layer

Feedforward Neural Network
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