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✢ Sources: jets, convection, mountains etc.
✢ Multiple scales: 100 m to 1000s km 

✢ Vertical coupling: carry near surface 
momentum to upper atmosphere
within hours. 10x faster propagation in the 
horizontal.

Atmospheric Gravity Waves (GWs)
Typical

GW
lifecycle

cz ~ 0-15 m/s
cH ~ 0-150 m/s 

breaking 
level

critical
level



  

Critical Importance of Atmospheric Gravity Waves

Tropical Quasi-Bienniel Oscillation (QBO)

Quiescent 
summer 

stratosphere

~ 28 month period

QBO animation credits: Hamid Pahlavan  

Atmospheric GWs induce clear air turbulence (CAT) 
and influence upper tropospheric predictability.

Key drivers of global circulation and periodic
wind patterns, in the middle atmosphere.
Indirectly influencing Antarctic summer
heat extremes via polar vortex variability
(Choi et al., 2024).



  

Current GW Parameterizations have Notable Biases

Key observed properties:
1) Lateral propagation: of wave fluxes away from source

2) Refraction: changes in wavenumber as they propagate

3) Transience: temporal coherence of wave packets

Resolved waves resolved flux parameterized flux

Biases in:
a) QBO representation

b) “cold-pole” bias in Austral summer 
    stratosphere

c) Midlatitude jet strength and 
    mesospheric overturning circulation



  

Background atmospheric
conditions 

(resolved by climate models)

Gravity wave 
momentum fluxes from high-

resolution reanalysis/obs
(unresolved by climate models)

Learn momentum fluxes 
from high-resolution, GW-
resolving data

Couple the ML flux predictor to a 
coarse-resolution climate model

Objective: Use ML to Predict Subgrid-scale Gravity Wave Fluxes



  

Part 1: Nonlocal Emulation
Developing ML architectures to learn GW lateral propagation



  

We train three ML models with varying degrees of nonlocality

Model M1:  inspired from traditional parameterizations
Dynamical variables in a column used to predict flux in the column

M1: Single Column



  

Model M2: Introducing slight nonlocality in space
Dynamical variables in 1 + 8 neighboring columns to predict fluxes in the central column

M2: Multiple Columns
We train three ML models with varying degrees of nonlocality



  

Model M3: Globally nonlocal Attention UNet (Oktay et al. 2018) 
Global input of dynamical variables to predict fluxes globally.

M3: Global Attention U-Net
We train three ML models with varying degrees of nonlocality



  

Training Configuration for Models M1-M3

● M1-M3 first trained on 4 years of ERA5 reanalysis (3 years training + 1 year validation). 
Identical hyperparameters and similar model sizes.

● Later, re-trained on 4 months (NDJF) of 1.4 km global ECMWF-IFS model.

● Trained on different feature sets, both globaly and exclusively in the stratosphere.



  

Evaluate performance beyond RMSE

Test 2. Seasonal AveragesTest 1. Temporal Evolution Test 3. Flux distribution

Does the model generate
desired statistics?

Does the model generate
accurate global flux distribution?

Does the model correctly
learn the temporal wave 
evolution



  
M1-M3 models skillfully learn the intermittent and coherent evolution of GW fluxes in the atmosphere
over both orographic and nonorographic hotspots. Nonlocal models uniformly perform better.

1. Temporal
Evolution



  

Attention Unet (M3) correctly predicts wave excitation and lateral propagation over multiple hotspots 
over the Southern Ocean (Andes, small islands, storm tracks, Antarctic Peninsula, etc.) 

Successful simulation of belts of midlatitude GW activity in both hemispheres without special 
provisions for recurrence.

1. Temporal
Evolution



  

2. Seasonal Averages

All of M1, M2, M3 generate 
commendable predictions.

Attention UNets generate the 
most accurate predictions in 
the midlatitudes
(where horizontal propagation
is most prominent).

M1

M3M2



  

3. Global Flux Distribution

Seasonal averages daily averages

The seasonally averaged distributions 
are reproduced quite well.

… but the neural nets struggle with 
small values – predict zeros instead.
Similar to AIWP models underestimating 
small scales? 

Hellinger distance between two distributions:



  

Part 2: Transfer Learning (TL)
Blending low-fidelity datasets with high-fidelity datasets



  

ERA5 under-resolves mesoscale GWs.

Improving predictions using transfer learning (TL) on high-res datasets



  

ERA5 under-resolves mesoscale GWs. This underestimation is corrected by transfer 
learning on limited-period-high-resolution fluxes from a kilometer-scale global models

Improving predictions using transfer learning (TL) on high-res datasets



  

Trained only on ERA5
Tested on ERA5
Skillful prediction

Trained only on ERA5
Tested on IFS-1km
Under-resolves fluxes

NDJF Fluxes 
from ERA5

NDJF Fluxes 
from IFS-1km

Partly Retraining on 1km global ECMWF-IFS: Best of Both Worlds?



  

Trained only on ERA5
Tested on ERA5
Skillful prediction

Trained only on ERA5
Tested on IFS-1km
Under-resolves fluxes

Correction of IFS flux
prediction after 
transfer learning
(as expected)

NDJF Fluxes 
from ERA5

NDJF Fluxes 
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Partly Retraining on 1km global ECMWF-IFS: Best of Both Worlds?



  

Trained only on ERA5
Tested on ERA5
Skillful prediction

NDJF Fluxes 
from ERA5

NDJF Fluxes 
from IFS-1km

Trained only on ERA5
Tested on IFS-1km
Under-resolves fluxes

Correction of IFS flux
prediction after 
transfer learning
(as expected)

Improved magnitudes 
in ERA5 after 
transfer learning

Partly Retraining on 1km global ECMWF-IFS: Best of Both Worlds?



  

Following TL, models predict 
stronger fluxes, while 
identifying the correct hotspots.

The models blend learnings from 
both low-fidelity high-volume and 
high-fidelity low-volume datasets.

Models provide effective ‘scaling’
of fluxes even on out-of-set
months.

TL Yields Skillful Predictions on Out-of-set Months
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Following TL, models predict 
stronger fluxes, while 
identifying the correct hotspots.

The models blend learnings from 
both low-fidelity high-volume and 
high-fidelity low-volume datasets.

Models provide effective ‘scaling’
of fluxes even on out-of-set
months.

TL Yields Skillful Predictions on Out-of-set Months



  

Physically Consistent Performance on Key Stratospheric Features

Improved prediction
around QBO transitions
in July ‘15

Improved prediction
around vortex 
breakdown
in Sept-Oct ‘15

Despite, transfer learning
only on NDJF data from 
IFS-1km



  

Code: github.com/DataWaveProject/nonlocal_gwfluxes
HiRes IFS data: https://osf.io/gx32s/ 

Submitted to JAMES (preprint: tinyurl.com/gwbaco25)



  

Key Conclusions

1. Skillful performance: The three ML schemes learn nonlocal propagation, 
temporal coherence, and seasonal distributions of GW fluxes from high-resolution 
data. 

2. Importance of nonlocality: The model with the highest embedded nonlocality 
generates the best predictions.

3. Transfer learning: allows blending multiple datasets to improve performance 

4. Limitation: the schemes proficiently predict large-amplitude GW packets, 
but predicting small values is still a challenge

1.  Testing performance on dissimilar model outputs: high-resolution CAM and ICON runs.

2. Coupling the ML scheme to a climate model (CAM7) to test 
“online” performance and stratospheric variability: a software engineering challenge

In Progress



  

Supplement



  

The three models generate comparable distribution 
tails for all seasons

Prominent narrow bias in flux predictions by ANNs

Areas of weak GW activity (in summer stratosphere)
most challenging to simulate.

3. Global Flux Distribution

Seasonal averages daily averages



  

Learning nonlocality through nonlocal architectures



  

Attention UNet Schematic



  

Daily Sampled Flux Distributions



  

Transfer Learning on out-of-set months



  



  

GWs form a belt of wave activity in the middle atmosphere

local GW 
generation

propagation through 
strong shear

global 
spreading

1979-2022 
December
January
February
mean
From
reanalysis

Gupta, Sheshadri, Alexander, Birner (2024), GRL | Insights on Lateral Gravity Wave Propagation in the Extratropical Stratosphere from 44 Years of 
ERA5 Data

Green: Flux envelope, Color: Flux at 2 hPa (~45 km)

1979-2022 
June
July
August
mean from
reanalysis



  



  

Neural Network as a Collection of Perceptrons
Brain is a network of interconnected neurons. For any input/actions, only selected neurons fire at a given time. A multi-
layer perceptron (MLP) is a collection of neurons with equisized, fully-connected hidden layers. Similarly, a size-varying 
MLP without loops is called a feedforward neural network.

Consider a feedforward neural network arranged as an input layer, 2 hidden layers, and an output layer:

Forward Propagation

(1) Each layer maps to the next using a set of weights

(2) The linear transformation is followed by a non-
linear activation σ(.)

Forward Propagation

(1) Each layer maps to the next using a set of weights

(2) The linear transformation is followed by a non-
linear activation σ(.)

Feedforward Neural Network
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