Lateral Gravity Wave Propagation in the Extratropical Stratosphere from 44 Years of ERA5

Aman Gupta¹, Aditi Sheshadri¹, M. Joan Alexander², Thomas Birner^{3,4}

 Department of Earth System Science, Stanford University, Stanford, California NorthWest Research Associates, Boulder, Colorado Ludwig Maximilian University, Munich, Bavaria 4DLR Oberpfaffenhofen, Bavaria

Deutsches Zentrum für Luft-und-Raumfahrt (DLR), Oberpfaffenhofen, Bavaria, Germany 17*th May 2024*

Images: Gravity wave packets converging over Drake Passage, polar vortex over Scandinavia (earth.nullschool.net), wave refraction into the polar night jet

An Introduction to Gravity Waves (GWs)

Menlo Park, CA

Convective GW JAXA Himawari satellite

Hunga-Tonga eruption

GWs traced by Noctilucent clouds

- ✤ Fast response to a perturbation in a stably stratified fluid.
	- Jet imbalance
	- Geostrophic adjustment
	- Convective activity
	- Flow over mountain
	- Secondary generation from breaking GWs
- ✤ Evolve over 100 m 1000 km horizontally, from over minutes to couple of days.
- ✤ **Spectrum of gravity waves!**

Menlo Park, CA

Convective GW JAXA Himawari satellite

Hunga-Tonga eruption

GWs traced by Noctilucent clouds

Where's this?

????

Menlo Park, CA

Convective GW JAXA Himawari satellite

Hunga-Tonga eruption

GWs traced by Noctilucent clouds

Where's this?

Mars!

GWs: Key Drivers of Upper Atmospheric Overturning Circulation

✢ Carry near surface momentum to upper atmosphere: vertical coupling

GWs drive the pole-to-pole meridional overturning circulation in the mesosphere.

> Tertiary \rightarrow Secondary \rightarrow Primary troposphere stratosphere mesosphere

GW schematic: Kim et al. (2003), Atmos-Ocean

Tropical Quasi-Bienniel Oscillation (QBO)

QBO animation credits: Hamid Pahlavan

Polar vortex animations: Mattia Serra and George Haller (ETH Zurich)

Occasional sudden warming and breakdown of the vortex (**SSWs**)

Polar vortex animations: Aditi Sheshadri

Occasional sudden warming and breakdown of the vortex (**SSWs**)

Gradual springtime erosion (**final warming**)

Polar vortex animations: Aditi Sheshadri

Occasional sudden warming and breakdown of the vortex (**SSWs**)

Chemically, GWs trigger creation of polar stratospheric clouds that are crucial to ozone destruction (Doernbrack et al. (2002), JGR-A)

Gradual springtime erosion (**final warming**)

Polar vortex animations: Aditi Sheshadri

GWs: Limited Obs. and Inadequate Model Representation

Horizontal mapping

Strateole-2/Concordiasi/Google Loon

Vertical profiling

LiDARs Radiosondes

Limited channels satellites

HIRDLS/AIRS/Aeolus

GWs: Limited Obs. and Inadequate Model Representation

Horizontal mapping

Vertical profiling

LiDARs Radiosondes

Limited channels satellites

HIRDLS/AIRS/Aeolus

~100-300 km

Climate models too coarse to resolve most GWs and

GWs: Limited Obs. and Inadequate Model Representation

Horizontal mapping

Vertical profiling

LiDARs Radiosondes

Limited channels satellites

HIRDLS/AIRS/Aeolus

Climate models too coarse to resolve most GWs and

Resolved and parameterized GW forcings are worlds apart

Inaccurate GW Forcing in Models leads to Circulation Biases

Tropics: Model uncertainty in QBO period and amplitude (Bushell et al. (2020), QJRMS)

Extratropics: "Cold-pole bias" in models due to missing GWs near 60°S. Seasonal transitions of polar vortex delayed by up to 2-4 weeks. (McLandress et al. (2012), JAS)

Inaccurate GW Forcing in Models leads to Circulation Biases

Tropics: Model uncertainty in QBO period and amplitude (Bushell et al. (2020), QJRMS)

Extratropics: "Cold-pole bias" in models due to missing GWs near 60° S. Seasonal transitions of polar vortex delayed by up to 2-4 weeks. (McLandress et al. (2012), JAS)

Parameterizations miss key GW physics

- ✢ Lateral Propagation
- ✢ Refraction
- ✢ Transience
- ✢ Missing sources

Inaccurate GW Forcing in Models leads to Circulation Biases

 -15

6 $\dot{8}$ 10

Obs. and High-Res models show GW lateral propagation

Southeastward extension of phase lines associated with GW packet excited over the Andes.

Obs. and High-Res models show GW lateral propagation

Southeastward extension of phase lines associated with GW packet excited over the Andes.

Evidence of GW lateral propagation, but parameterizations assume pure vertical propagation

Lateral Flux Forcing Sensitive to Wave Type

Lateral flux contributions **similar to** vertical flux for mountain waves in October 2010 in UM. (Kruse et al. (2022), *JAS*)

Lateral flux contributions **much weaker** for mountain waves in August 2019 in IFS-1km. (Gupta et al. (2024), *JAS*)

Do lateral propagation effects matter on climatological timescales?

- ✢ What is the mean wintertime forcing due to lateral fluxes on the zonal flow?
- \div What is the global distribution of lateral GW fluxes?
- \div How does this forcing evolve during the SSW and final warming period?

Insights on Lateral Gravity Wave Propagation in the Extratropical Stratosphere from 44 Years of ERA5 Data

Aman Gupta¹, Aditi Sheshadri¹, M. Joan Alexander², and Thomas Birner^{3,4}

Submitted to GRL

Computing Resolved GW Forcing

Resolved wave-driving

Computing Resolved GW Forcing

$$
\underbrace{\frac{1}{R\cos\phi}\vec{\nabla}\cdot\vec{F}}_{\text{EPFD}} \longrightarrow \vec{F} = \left(F^{(\phi)}, F^{(p)}\right) = R\cos\phi \left(-\overline{u'v'} + \overline{u}_p\frac{\overline{v'\theta'}}{\overline{\theta}_p}, \left(f - \frac{1}{R\cos\phi}(\overline{u}\cos\phi)_{\phi}\right)\frac{\overline{v'\theta'}}{\overline{\theta}_p} - \overline{u'\omega'}\right)
$$

Computing Resolved GW Forcing

$$
\frac{1}{R \cos \phi} \vec{\nabla} \cdot \vec{F} \longrightarrow \frac{1}{R \cos \phi} \vec{\nabla} \cdot \vec{F} = \frac{1}{R \cos \phi} \left(\frac{1}{R \cos \phi} \left(F^{(\phi)} \cos \phi \right)_{\phi} + F_p^{(p)} \right)
$$
\n
$$
\xrightarrow{\text{EPFD}}
$$
\nMeridional Momentum Flux Convergence

\n
$$
\frac{-1}{R \cos^2 \phi} \left(\overline{u'v'} \cos^2 \phi \right)_{\phi}
$$
\nMeridional Heat Flux Convergence

\n
$$
\frac{1}{R \cos^2 \phi} \left(\overline{u_p} \frac{\overline{v'} \theta'}{\overline{\theta_p}} \cos^2 \phi \right)_{\phi}
$$
\nVertical Meanentum Flux Convergence

\n
$$
\xrightarrow{\text{Vertical Heat Flux Convergence}}
$$
\n
$$
\left(\left[f - \frac{(\overline{u} \cos \phi)_{\phi}}{R \cos \phi} \right] \frac{\overline{v'} \theta'}{\overline{\theta_p}} \right)_{p}
$$

Dataset:

44 Yrs of ERA5 output:

- ✢ ~30 km horizontal resolution, 137 model levels, interpolated to a 25 km grid and 37 pressure levels
- ✢ 0.25 km vertical resolution in UTLS, 2.5 km near stratopause
- ✢ Resolves GWs ~150 km and above

✘ Limited vertical and horizontal resolution

- ✘ All waves model generated, none assimilated
- ✘ Stratospheric sponge above 10 hPa, mesospheric sponge above 1 hPa

Methodology to compute fluxes:

Extract small-scale wave fluxes (EP-Fluxes) using Gaussian tapering of spectral harmonics:

- ✢ Damping over scales 500-1000 km in the midlatitudes
- ✢ Coefficients damped by a factor of ~2 for wavenumber 30.

How Much Forcing to Resolved Gravity Waves Provide?

Strongest contribution towards net resolved forcing provided by vertical momentum flux convergence

Yet, contribution from lateral flux convergence same order-of-magnitude

How Much Forcing do Resolved Gravity Waves Provide?

Strongest contribution towards net resolved forcing provided by vertical momentum flux convergence

Yet, contribution from lateral flux convergence same order-of-magnitude

arrows: small-scale EP-Flux vectors

How Much Forcing do Resolved Gravity Waves Provide?

For strong vortex days, DJF forcing in the Northern Hemisphere is nearly identical to the JJA forcing in the Southern Hemisphere, highlighting the role of shear

How Much Forcing do Resolved Gravity Waves Provide?

Weak contributions from the heat flux convergence terms in the upper stratosphere.

Notable contributions in the midlatitude UTLS region, comparable to vertical momentum flux convergence.

$-u'\omega'$ Peak-Winter Vertical Flux Distribution

Vertical fluxes in the lower stratosphere mostly concentrated over orographic regions

$|-u'\omega'$ Peak-Winter Vertical Flux Distribution

Higher up, at 20 hPa, fluxes spread over a wider expanse.

Peak-Winter Vertical Flux Distribution

 $u'\omega'$

In the upper stratosphere (color), fluxes spread to form a belt of GW activity.

Agreement with AIRS climatology using temperature variance. Hindley et al. (2020), GRL

Fluxes in ERA5 a factor 2 stronger.

Peak-Winter Lateral Flux Distribution $|-u'v'|$

Lateral fluxes in the lower midlatitude stratosphere too concentrated over orographic regions

Peak-Winter Lateral Flux Distribution $|-u'v'|$

Higher up, at 20 hPa, lateral fluxes not strongly correlated with topography, but spread over the whole latitude circle.

$-u'v'$ Peak-Winter Lateral Flux Distribution

Poleward shift in the lateral flux belt in the middle-to-upper stratosphere. Lateral flux notable over the whole Southern Ocean, not just over the Drake passage.

Could be nice to validate these with Ray tracing experiments?

How do vertical and lateral fluxes evolve around abrupt changes in the stratospheric mean flow?

Downward migration of GW vertical momentum flux in response to changing background winds

GW forcing does not fully recover, despite vortex recovery

Forcing before SSWs

zonal winds \bar{U}_{60W}^{10hPa} (m/s)

Dramatic reduction in vertical flux convergence in the upper stratosphere following SSWs

- $u' \omega'_{\rho}$ forcing (m s⁻¹ day⁻¹)

Forcing after SSWs

Dramatic reduction in vertical flux convergence in the upper stratosphere following SSWs

 $\mathbf 1$

3

30

 1

 $\overline{3}$

30

Pressure (hPa) 10

Pressure (hPa) 10

Forcing after SSWs

Dramatic reduction in vertical flux convergence in the upper stratosphere following SSWs

Lateral fluxes converge much equatorward following SSWs

Evolution of GW Fluxes around Antarctic Final Warmings

Forcing before final warming

Evolution of GW Fluxes around Antarctic Final Warmings

Evolution of GW Fluxes around Antarctic Final Warmings

Lateral Propagation Weak During Final Warming

 0.010 $60°V$ (g) $u'v'$ _¢ term (m s 0.005 0.000 $120°W$ 60°E -0.005 $\frac{1}{9}$ -0.010

A belt of westward flux dissipation surrounds Antarctica with maxima over the Andes, Antarctic Peninsula, and small island

Lateral flux dissipation is weak and more localized leeward of the topography

Lateral Propagation Weak During Final Warming

A belt of westward flux dissipation surrounds Antarctica with maxima over the Andes, Antarctic Peninsula, and small island

Lateral flux dissipation is weak and more localized leeward of the topography

Is Missing Orographic Gravity Wave Drag near 60°S the Cause of the **Stratospheric Zonal Wind Biases in Chemistry-Climate Models?** McLandress et al. (2012), JAS

Key Takeaways

- **GWs are one of the key drivers** of the middle atmospheric overturning circulation and variability. GW excitation is local but has global impacts which are not accurately represented even in state-of-the-art climate models. 1
- **First-ever quantification** of peak winter resolved GW forcing over climatological timescales reveals that forcing from lateral flux convergence is the same order-of-magnitude as that from vertical flux convergence. 2
- **GW activity belt:** prominent belts of both vertical and lateral fluxes in the midlatitude upper stratosphere noted in climatology. Sources not fully known. 3
- **Abrupt changes** in stratospheric GW forcing around SSWs. Causality remains to be explored. 4
- **Lateral effects relatively weaker around Antarctic final warmings** likely due to weakening shear. 5

Thank You!

